题目内容
【题目】已知平面向量a=(1,x),b=(2x+3,-x),x∈R.
(1)若a⊥b,求x的值;
(2)若a∥b,求|a-b|的值.
【答案】(1)x=-1或x=3(2)2或2.
【解析】(1)若a⊥b,
则a·b=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0,
整理得x2-2x-3=0,解得x=-1或x=3.
(2)若a∥b,则有1×(-x)-x(2x+3)=0,
即x(2x+4)=0,解得x=0或x=-2.
当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),
∴|a-b|==2;
当x=-2时,a=(1,-2),b=(-1,2),a-b=(2,-4),
∴|a-b|==2.
综上,可知|a-b|=2或2.
练习册系列答案
相关题目
【题目】为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩、物理成绩进行分析.下面是该生7次考试的成绩.
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;
(2)已知该生的物理成绩与数学成绩是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.
参考公式:方差公式:,其中为样本平均数.,。