题目内容

设函数f(x)=
12
x2+(1-a)x+(a-1)lnx

(1)当a=0时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)若函数f(x)在区间[2,3]上单调递减,求a的取值范围.
分析:(1)求导函数,确定确定坐标,与切线的斜率,即可求得切线方程;
(2)求导数f′(x)=
x2+(1-a)x+a-1
x
,记g(x)=x2+(1-a)x+a-1,利用函数f(x)在区间[2,3]上单调递减,可得x2+(1-a)x+a-1≤0在区间[2,3]上恒成立,从而可建立不等式组,即可求a的取值范围.
解答:解:(1)a=0时,f′(x)=
x2+x-1
x
,∴f′(1)=1
∴f(1)=
3
2
,∴曲线y=f(x)在点A(1,f(1))处的切线方程为y-
3
2
=x-1,即x-y+
1
2
=0

(2)f′(x)=
x2+(1-a)x+a-1
x
,记g(x)=x2+(1-a)x+a-1
∵函数f(x)在区间[2,3]上单调递减
∴x2+(1-a)x+a-1≤0在区间[2,3]上恒成立
g(2)≤0
g(3)≤0
,∴
4+2(1-a)+a-1≤0
9+3(1-a)+a-1≤0

∴a≥
11
2
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,正确求导是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网