题目内容
【题目】已知点,且,满足条件的点的轨迹为曲线.
(1)求曲线的方程;
(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.
【答案】(1)(2)存在, 或.
【解析】
(1)由得看成到两定点的和为定值,满足椭圆定义,用定义可解曲线的方程.
(2)先讨论斜率不存在情况是否符合题意,当直线的斜率存在时,设直线点斜式方程,由,可得,再直线与椭圆联解,利用根的判别式得到关于的一元二次方程求解.
解:设,
由, ,
可得,即为,
由,可得的轨迹是以为焦点,且的椭圆,
由,可得,可得曲线的方程为;
假设存在过点的直线l符合题意.
当直线的斜率不存在,设方程为,可得为短轴的两个端点,
不成立;
当直线的斜率存在时,设方程为,
由,可得,即,
可得,化为,
由可得,
由在椭圆内,可得直线与椭圆相交,
,
则
化为,即为,解得,
所以存在直线符合题意,且方程为或.
练习册系列答案
相关题目