题目内容
已知直线l与椭圆C:![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_ST/1.png)
(Ⅰ)证明x12+x22和y12+y22均为定值;
(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_ST/2.png)
【答案】分析:(Ⅰ)根据已知设出直线l的方程,利用弦长公式求出|PQ|的长,利用点到直线的距离公式求点O到直线l的距离,根据三角形面积公式,即可求得x12+x22和y12+y22均为定值;
(Ⅱ)由(I)可求线段PQ的中点为M,代入|OM|•|PQ|并利用基本不等式求最值;(Ⅲ)假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/0.png)
由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2,从而求得点D,E,G,的坐标,可以求出直线DE、DG、EG的方程,从而得到结论.
解答:解:(Ⅰ)1°当直线l的斜率不存在时,P,Q两点关于x轴对称,
所以x1=x2,y1=-y2,
∵P(x1,y1)在椭圆上,
∴
①
又∵S△OPQ=
,
∴|x1||y1|=
②
由①②得|x1|=
,|y1|=1.此时x12+x22=3,y12+y22=2;
2°当直线l的斜率存在时,是直线l的方程为y=kx+m(m≠0),将其代入
得
(3k2+2)x2+6kmx+3(m2-2)=0,△=36k2m2-12(3k2+2)(m2-2)>0
即3k2+2>m2,
又x1+x2=-
,x1•x2=
,
∴|PQ|=
=
,
∵点O到直线l的距离为d=
,
∴S△OPQ=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/12.png)
=
,
又S△OPQ=
,
整理得3k2+2=2m2,此时x12+x22=(x1+x2)2-2x1x2=(-
)2-2
=3,
y12+y22=
(3-x12)+
(3-x22)=4-
(x12+x22)=2;
综上所述x12+x22=3,y12+y22=2.结论成立.
(Ⅱ)1°当直线l的斜率不存在时,由(Ⅰ)知
|OM|=|x1|=
,|PQ|=2|y1|=2,
因此|OM|•|PQ|=
.
2°当直线l的斜率存在时,由(Ⅰ)知
=-
,
=k
+m=
=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/28.png)
|OM|2=(
)2+(
)2=
=
,
|PQ|2=(1+k2)
=
=2(2+
),
所以|OM|2|PQ|2=
×
=(3-
)(2+
)
=
.
|OM|•|PQ|
.当且仅当
=2+
,
即m=±
时,等号成立.
综合1°2°得|OM|•|PQ|的最大值为
;
(Ⅲ)椭圆C上不存在三点D,E,G,使得S△ODE=S△ODG=S△OEG=
,
证明:假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/48.png)
由(Ⅰ)得
u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2
解得u2=x12=x22=
;v2=y12=y22=1.
因此u,x1,x2只能从±
中选取,
v,y1,y2只能从±1中选取,
因此点D,E,G,只能在(±
,±1)这四点中选取三个不同点,
而这三点的两两连线中必有一条过原点,与S△ODE=S△ODG=S△OEG=
矛盾.
所以椭圆C上不存在满足条件的三点D,E,G.
点评:此题是个难题.本题考查了直线与椭圆的位置关系,弦长公式和点到直线的距离公式,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
(Ⅱ)由(I)可求线段PQ的中点为M,代入|OM|•|PQ|并利用基本不等式求最值;(Ⅲ)假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/0.png)
由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2,从而求得点D,E,G,的坐标,可以求出直线DE、DG、EG的方程,从而得到结论.
解答:解:(Ⅰ)1°当直线l的斜率不存在时,P,Q两点关于x轴对称,
所以x1=x2,y1=-y2,
∵P(x1,y1)在椭圆上,
∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/1.png)
又∵S△OPQ=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/2.png)
∴|x1||y1|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/3.png)
由①②得|x1|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/4.png)
2°当直线l的斜率存在时,是直线l的方程为y=kx+m(m≠0),将其代入
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/5.png)
(3k2+2)x2+6kmx+3(m2-2)=0,△=36k2m2-12(3k2+2)(m2-2)>0
即3k2+2>m2,
又x1+x2=-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/7.png)
∴|PQ|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/8.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/9.png)
∵点O到直线l的距离为d=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/10.png)
∴S△OPQ=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/13.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/14.png)
又S△OPQ=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/15.png)
整理得3k2+2=2m2,此时x12+x22=(x1+x2)2-2x1x2=(-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/17.png)
y12+y22=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/18.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/19.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/20.png)
综上所述x12+x22=3,y12+y22=2.结论成立.
(Ⅱ)1°当直线l的斜率不存在时,由(Ⅰ)知
|OM|=|x1|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/21.png)
因此|OM|•|PQ|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/22.png)
2°当直线l的斜率存在时,由(Ⅰ)知
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/24.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/25.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/26.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/27.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/28.png)
|OM|2=(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/29.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/30.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/31.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/32.png)
|PQ|2=(1+k2)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/33.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/34.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/35.png)
所以|OM|2|PQ|2=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/36.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/37.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/38.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/39.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/40.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/41.png)
|OM|•|PQ|
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/42.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/43.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/44.png)
即m=±
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/45.png)
综合1°2°得|OM|•|PQ|的最大值为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/46.png)
(Ⅲ)椭圆C上不存在三点D,E,G,使得S△ODE=S△ODG=S△OEG=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/47.png)
证明:假设存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/48.png)
由(Ⅰ)得
u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2
解得u2=x12=x22=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/49.png)
因此u,x1,x2只能从±
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/50.png)
v,y1,y2只能从±1中选取,
因此点D,E,G,只能在(±
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/51.png)
而这三点的两两连线中必有一条过原点,与S△ODE=S△ODG=S△OEG=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202112454224573032/SYS201312021124542245730020_DA/52.png)
所以椭圆C上不存在满足条件的三点D,E,G.
点评:此题是个难题.本题考查了直线与椭圆的位置关系,弦长公式和点到直线的距离公式,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目