题目内容
【题目】在极坐标系中,已知曲线:和曲线:,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.
(1)求曲线和曲线的直角坐标方程;
(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.
【答案】(1)的直角坐标方程为,的直角坐标方程为.(2).
【解析】
(1)极坐标方程化为直角坐标方程可得的直角坐标方程为,的直角坐标方程为.
(2)由几何关系可得直线的参数方程为(为参数),据此可得,,结合均值不等式的结论可得当且仅当时,线段长度取得最小值为.
(1)的极坐标方程即,则其直角坐标方程为,
整理可得直角坐标方程为,
的极坐标方程化为直角坐标方程可得其直角坐标方程为.
(2)设曲线与轴异于原点的交点为,
∵,∴过点,
设直线的参数方程为(为参数),
代入可得,解得或,
可知,
代入可得,解得,
可知,
所以,
当且仅当时取等号,
所以线段长度的最小值为.
练习册系列答案
相关题目