题目内容

【题目】定义:是无穷数列,若存在正整数k使得对任意,均有则称是近似递增(减)数列,其中k叫近似递增(减)数列的间隔数

1)若是不是近似递增数列,并说明理由

2)已知数列的通项公式为,其前n项的和为,若2是近似递增数列的间隔数,求a的取值范围:

3)已知,证明是近似递减数列,并且4是它的最小间隔数.

【答案】1)是近似递增数列,详见解析(23)证明见解析;

【解析】

1)根据近似递增数列的定义判断可知是近似递增数列;

2)求出,根据,即恒成立,可得

(3)因为等价于,因为nk是正整数,所以均取不到,所以时上式恒成立,可得是近似递减数列,再验证时,不是近似递减数列,则可得4是它的最小间隔数.

1)是近似递增数列,理由如下:

因为

[注:234,…,都是间隔数.]

,所以是近似递增数列.

2)由题意得

所以对任意恒成立,

恒成立,.

,则

a的取值范围是.

3)因为等价于

,(*

因为nk是正整数,所以均取不到

所以时上式恒成立,即是近似递减数列,4是它的间隔数.

,当时,,故不等式(*)不成立;

,当时,,故不等式(*)不成立;

,当时,,故不等式(*)不成立;

所以,4是它的最小间隔数.

练习册系列答案
相关题目

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年初出现并在全球蔓延的新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某药物研究所为筛查该种病毒,需要检验血液是否为阳性,现有,且)份血液样本,每个样本取到的可能性相等,有以下两种检验方式:

方式一:逐份检验则需要检验次;

方式二:混合检验,将份血液样本分别取样混合在一起检验,若检验结果为阴性,则这份的血液全为阴性,因而这份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为

1)假设有6份血液样本,其中只有2份样本为阳性,从中任取3份样本进行医学研究,求至少有1份为阳性样本的概率;

2)假设将)份血液样本进行检验,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为

①运用概率统计的知识,若,试求关于的函数关系式

②若与干扰素计量相关,其中数列满足,当时,试讨论采用何种检验方式更好?

参考数据:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网