题目内容

(本小题满分12分)

       已知函数f(x)=(x∈R).

       ⑴当f(1)=1时,求函数f(x)的单调区间;[来源:Zxxk.Com]

       ⑵设关于x的方程f(x)=的两个实根为x1,x2 ,且-1≤a≤1,求|x1-x2|的最大值;

       ⑶在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.

 

【答案】

(1)f(x)的减区间是(-∞,-2]和[1,+∞),增区间是[-2,1];(2)3;(3)m≥2或m≤-2

【解析】⑴ 由f(1)=1得a=-1 ,……………………………………………………2分[来源:学+科+网]

       f′(x)===≥0……………………4分

       -2≤x≤1,所以f(x)的减区间是(-∞,-2]和[1,+∞),增区间是[-2,1]…5分

       ⑵方程f(x)=可化为x2-ax-2=0,Δ=a2+8 >0

       ∴x2-ax-2=0有两不同的实根x1,x2

       则x1+x2=a,x1x2=-2…………………………7分

       ∴ |x1-x2|=

       ∵-1≤a≤1 ,∴当a=±1时,

       ∴|x1-x2max==3…………………………8分

       ⑶若不等式m2+tm+1≥|x1-x2|恒成立,

       由⑵可得m2+tm+1≥3,对t∈[-1,1] 都成立m2+tm-2≥0 ,t∈[-1,1],

       设g(t)=m2+tm-2…………………………………………9分

       若使t ∈[-1,1]时g(t)≥0都成立,

       则…………11分

       解得:m≥2或m≤-2 ,所以m的取值范围是m≥2或m≤-2……………………12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网