题目内容

(2013•潍坊一模)在区间[0,4]内随机取两个数a、b,则使得函数f(x)=x2+ax+b2有零点的概率为
1
4
1
4
分析:根据题意,以a为横坐标、b为纵坐标建立如图所示直角坐标系,得到所有的点在如图的正方形OABC及其内部任意取,由一元二次方程根与系数的关系,算出函数f(x)=x2+ax+b2有零点时满足a≥2b,满足条件的点(a,b)在正方形内部且在直线a-2b=0的下方的直角三角形,因此用所得直角三角形面积除以正方形的两种,即可得到所求的概率.
解答:解:∵两个数a、b在区间[0,4]内随地机取,
∴以a为横坐标、b为纵坐标建立如图所示直角坐标系,
可得对应的点(a,b)在如图的正方形OABC及其内部任意取,
其中A(0,4),B(4,4),C(4,0),O为坐标原点
若函数f(x)=x2+ax+b2有零点,则
△=a2-4b2≥0,解之得a≥2b,满足条件的点(a,b)在直线a-2b=0的下方,
且在正方形OABC内部的三角形,其面积为S1=
1
2
×4×2
=4
∵正方形OABC的面积为S=4×4=16
∴函数f(x)=x2+ax+b2有零点的概率为P=
S1
S
=
4
16
=
1
4

故答案为:
1
4
点评:本题给出a、b满足的关系式,求函数f(x)=x2+ax+b2有零点的概率,着重考查了面积计算公式、一元二次方程根的判别式和几何概型计算公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网