题目内容
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中间矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
(1),,(2),(3)
解析试题分析:(1)有频率分布直方图知,小长方形的面积等于对应频率,因此分数在的频率为,又频率等于频数除以总数,而分数在之间的频数为,因此全班人数为.(2)因为分数在之间的频数为,所以分数在之间的频率为,这代表间矩形的面积,所以高为.(3)分数在共有5人,任取两人共有10种基本事件(枚举法),挑出没有一份分数在的事件有3种基本事件,所以至少有一份分数在之间的事件有7种基本事件,所求概率为.
试题解析:解:(1)分数在的频率为, 2分
由茎叶图知:分数在之间的频数为,所以全班人数为. 4分
(2)分数在之间的频数为;
频率分布直方图中间的矩形的高为.7分
(3)将之间的个分数编号为, 之间的个分数编号为, 8分
在之间的试卷中任取两份的基本事件为:
共个, 10分
其中,至少有一个在之间的基本事件有个,
故至少有一份分数在之间的概率是. 13分
考点:频率分布直方图
对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下所示:
| 又发作过心脏病 | 未发作过心脏病 | 合计 |
心脏搭桥手术 | 39 | 157 | 196 |
血管清障手术 | 29 | 167 | 196 |
合计 | 68 | 324 | 392 |
某批次的某种灯泡共个,对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天) | 频数 | 频率 |
合计 |
(2)某人从这个灯泡中随机地购买了个,求此灯泡恰好不是次品的概率;
(3)某人从这批灯泡中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值.
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(2)用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
年龄 (岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频 数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成 人数 | 4 | 8 | 9 | 6 | 4 | 3 |
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为ξ,求随机变量ξ的分布列和数学期望.