题目内容
6.已知等比数列{an}中a2=4,a5=32(1)求数列{an}的通项公式;
(2)记Sn=a1+3a2+…+(2n-1)an,求Sn.
分析 (1)设比数列{an}的公比为q,利用等比数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)设比数列{an}的公比为q,
∵a2=4,a5=32,
∴$\left\{\begin{array}{l}{{a}_{1}q=4}\\{{a}_{1}{q}^{4}=32}\end{array}\right.$,解得a1=q=2,
∴an=2n.
(2)Sn=1×2+3×22+5×23+…+(2n-1)•2n,
2Sn=22+3×23+…+(2n-3)•2n+(2n-1)•2n+1,
∴-Sn=2+2×(22+23+…+2n)-(2n-1)•2n+1=$2×\frac{2({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1
=(3-2n)•2n+1-6,
∴Sn=(2n-3)•2n+1+6.
点评 本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.如果直线ax+2y+2=0与直线3x-y=0平行,则实数a=( )
A. | -3 | B. | -6 | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
18.已知定义在R上的偶函数f(x)在x≥0时,f(x)=ex+$\sqrt{x}$,若f(a)<f(a-1),则a的取值范围是
( )
( )
A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |