题目内容
已知函数fn(x)=(1+
)x(n∈N*).
(Ⅰ)比较fn′(0)与
的大小;
(Ⅱ)求证:
+
+
+…+
<3.
1 |
n |
(Ⅰ)比较fn′(0)与
1 |
n |
(Ⅱ)求证:
f1′(1) |
2 |
f2′(2) |
3 |
f3′(3) |
4 |
fn′(n) |
n+1 |
(Ⅰ)fn′(x)=(1+
)xln(1+
)
则fn′(0)=ln(1+
),设函数φ(x)=ln(1+x)-x,x∈(0,1]
则φ′(x)=
-1=
<0,则φ(x)单调递减,
所以ln(1+x)-x<φ(0)=0,所以ln(1+x)<x
则ln(1+
)<
,即fn′(0)<
;
(Ⅱ)
=
<
.
因为(1+
)n<1+1+
+
++
=3-
<3
则
+
+
++
<3(
+
++
)=3(1-
)<3
则原结论成立.
1 |
n |
1 |
n |
则fn′(0)=ln(1+
1 |
n |
则φ′(x)=
1 |
1+x |
-x |
1+x |
所以ln(1+x)-x<φ(0)=0,所以ln(1+x)<x
则ln(1+
1 |
n |
1 |
n |
1 |
n |
(Ⅱ)
fn′(n) |
n+1 |
(1+
| ||||
n+1 |
(1+
| ||
n(n+1) |
因为(1+
1 |
n |
1 |
1•2 |
1 |
2•3 |
1 |
(n-1)n |
1 |
n |
则
f1′(1) |
2 |
f2′(2) |
3 |
f3′(3) |
4 |
fn′(n) |
n+1 |
1 |
1•2 |
1 |
2•3 |
1 |
(n-1)n |
1 |
n |
则原结论成立.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目