题目内容

已知函数fn(x)=(1+
1
n
)x
(n∈N*).
(Ⅰ)比较fn(0)与
1
n
的大小;
(Ⅱ)求证:
f1(1)
2
+
f2(2)
3
+
f3(3)
4
+…+
fn(n)
n+1
<3
分析:(1)先求出函数f(x)的导数,构造函数φ(x)=ln(1+x)-x,研究函数φ(x)的单调性可判定fn(0)与
1
n
的大小
(2)利用第一问的结论对
fn′(n)
n+1
进行放缩,结合不等式的性质和裂项求和法的运用,联合求解即可证明原不等式.
解答:解:(Ⅰ)fn(x)=(1+
1
n
)xln(1+
1
n
)

fn(0)=ln(1+
1
n
)
,设函数φ(x)=ln(1+x)-x,x∈(0,1]
φ′(x)=
1
1+x
-1=
-x
1+x
<0
,则φ(x)单调递减,
所以ln(1+x)-x<φ(0)=0,所以ln(1+x)<x
ln(1+
1
n
)<
1
n
,即fn(0)<
1
n

(Ⅱ)
fn(n)
n+1
=
(1+
1
n
)
n
ln(1+
1
n
)
n+1
(1+
1
n
)
n
n(n+1)

因为(1+
1
n
)n
<1+1+
1
1•2
+
1
2•3
++
1
(n-1)n
=3-
1
n
<3

f1(1)
2
+
f2(2)
3
+
f3(3)
4
++
fn(n)
n+1
<3(
1
1•2
+
1
2•3
++
1
(n-1)n
)=3(1-
1
n
)<3

则原结论成立.
点评:本题主要考查了利用导数研究函数的单调性,以及不等式的证明,在高考中也常考,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网