题目内容

(12分)设P是△ABC所在平面外一点,P和A、B、C的距离相等,∠BAC为直角.

求证:平面PCB⊥平面ABC.

 

【答案】

见解析

【解析】

试题分析:证明:如答图所示,取BC的中点D,连结PD、AD,

∵D是直角三角形ABC的斜边BC的中点

∴BD=CD=AD,又PA=PB=PC,PD是公共边

∴∠PDA=∠PDB=∠POC=90°

∴PD⊥BC,PD⊥DA,PD⊥平面ABC

∴又PD平面PCB

∴平面PCB⊥平面ABC.

考点:本题主要考查点线面关系中的垂直问题、三角形的几何性质,考查空间想象能力及逻辑推理论证能力。

点评:空间问题注意转化成平面问题,这是解答立体几何问题的基本思路。证明平面与平面垂直,往往要利用两个平面垂直的判定定理。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网