题目内容

证明:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.
分析:要证明f(x)在点x0处连续,就必须证明x→x0时,f(x)的极限值为f(x0),由f(x)在点x0处可导,根据函数在点x0处可导的定义,逐步进行两个转化,一个是趋向的转化,一个是形式(变成导数定义的形式)的转化.
解答:证明:设x=x0+△x,则当x→x0时,△x→0
lim
x→x0
f(x)=
lim
△x→0
f(x0+△x)=
lim
△x→0
[f(x0+△x)-f(x0)+f(x0)]=
lim
△x→0
[
f(x0+△x)-f(x0
△x
△x+f(x0)]
=
lim
△x→0
f(x0+△x)
△x
lim
△x→0
△x+
lim
△x→0
f(x0)=f′(x0)•0+f(x0)=f(x0
∴函数f(x)在点x0处连续.
点评:此题考查学生掌握函数连续的定义,灵活运用导数的定义.解题时要正确理解函数的连续性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网