题目内容

△ABC中A,B,C的对边分别为a,b,c,且sin(B+C)+2sinA•cosB=0
求:(1)角B的大小;
(2)若b=
13
,a+c=4
,求△ABC的面积.
(1)∵B+C=π-A,∴sin(B+C)=sinA
由此可得sinA+2sinA•cosB=0,即sinA(1+2cosB)=0
∵sinA>0,∴1+2cosB=0,可得cosB=-
1
2

∵B∈(0,π),∴B=
3

(2)∵b=
13
,a+c=4

∴根据余弦定理,得b2=a2+c2-2accos120°,
可得13=(a+c)2-ac=16-ac,解得ac=3
因此,△ABC的面积S=
1
2
acsinB=
1
2
×3×sin120°
=
3
3
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网