题目内容
椭圆x2 |
a2 |
y2 |
b2 |
1 |
2 |
分析:由题设知x1+x2=-
,x1x2=-
,x12+x22=(x1+x2)2-2x1x2=
+
=
=
=2-e2.由此可知点P(x1,x2)与圆x2+y2=2的位置关系.
b |
a |
c |
a |
b2 |
a2 |
2c |
a |
b2+a2 |
a2 |
2a2-c2 |
a2 |
解答:解:∵离心率e=
,∴a=2c.
∵方程ax2+bx-c=0的两个根分别为x1,x2,
∴x1+x2=-
,x1x2=-
,
∴x12+x22=(x1+x2)2-2x1x2
=
+
=
=
=
=2-e2<2.
∴点P(x1,x2)在圆x2+y2=2内.
故答案为:点在圆内.
1 |
2 |
∵方程ax2+bx-c=0的两个根分别为x1,x2,
∴x1+x2=-
b |
a |
c |
a |
∴x12+x22=(x1+x2)2-2x1x2
=
b2 |
a2 |
2c |
a |
b2+2ac |
a2 |
=
b2+a2 |
a2 |
2a2-c2 |
a2 |
∴点P(x1,x2)在圆x2+y2=2内.
故答案为:点在圆内.
点评:本题考查圆锥曲线的性质和应用,解题时要要认真审题,仔细解答.
练习册系列答案
相关题目