搜索
题目内容
若存在实常数k和b,使函数
和
对其定义域上的任意实数x恒有:
和
,则称直线
为
和
的“隔离直线”。
已知
,则可推知
的“隔离直线”方程为
▲
试题答案
相关练习册答案
【答案】
【解析】略
练习册系列答案
夺冠金卷单元同步测试系列答案
夺冠课时导学案系列答案
发现会考系列答案
发展性评价系列答案
仿真试卷系列答案
非常好冲刺系列答案
非考不可年级衔接总复习系列答案
分层学习检测与评价系列答案
普通高中招生考试命题指导纲要系列答案
高分计划系列答案
相关题目
若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x
2
,φ(x)=2elnx(e为自然对数的底数).
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
若存在实常数k和b,使函数f(x)和g(x)对其定义域上的任意实数x恒有:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x
2
,φ(x)=2elnx,则可推知h(x),φ(x)的“隔离直线”方程为
y=2
e
x-e
y=2
e
x-e
.
若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x
2
,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在
x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为
-
1
4
;
④函数h(x)和m(x)存在唯一的隔离直线
y=2
e
x-e
.
其中真命题的个数( )
A.1个
B.2个
C.3个
D.4个
若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x
2
,φ(x)=2elnx(e为自然对数的底数).
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总