题目内容
(本小题满分12分)某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
下面临界值表仅供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:其中)
解:(Ⅰ)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高………………………………3分
(Ⅱ)记成绩为86分的同学为,其他不低于80分的同学为
“从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有:
一共15个,“抽到至少有一个86分的同学”所组成的基本事件有:共9个,………………5分
故-……………………7分
(Ⅲ)
,
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关……12分
练习册系列答案
相关题目