ÌâÄ¿ÄÚÈÝ
£¨2009•±¦É½Çøһģ£©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬3an+1+4Sn=3£¨nΪÕýÕûÊý£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼ÇS=a1+a2+¡+an+¡£¬Èô¶ÔÈÎÒâÕýÕûÊýn£¬kS£¼Snºã³ÉÁ¢£¬ÇókµÄÈ¡Öµ·¶Î§£¿
£¨3£©ÒÑÖª¼¯ºÏA={x|x2+a¡Ü£¨a+1£©x£¬a£¾0}£¬ÈôÒÔaΪÊ×ÏaΪ¹«±ÈµÄµÈ±ÈÊýÁÐÇ°nÏîºÍ¼ÇΪTn£¬ÎÊÊÇ·ñ´æÔÚʵÊýaʹµÃ¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¾ùÓÐTn¡ÊA£®Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼ÇS=a1+a2+¡+an+¡£¬Èô¶ÔÈÎÒâÕýÕûÊýn£¬kS£¼Snºã³ÉÁ¢£¬ÇókµÄÈ¡Öµ·¶Î§£¿
£¨3£©ÒÑÖª¼¯ºÏA={x|x2+a¡Ü£¨a+1£©x£¬a£¾0}£¬ÈôÒÔaΪÊ×ÏaΪ¹«±ÈµÄµÈ±ÈÊýÁÐÇ°nÏîºÍ¼ÇΪTn£¬ÎÊÊÇ·ñ´æÔÚʵÊýaʹµÃ¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¾ùÓÐTn¡ÊA£®Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©3an+1+4sn=3£¬3an+4sn-1=3£¬Á½Ê½Ïà¼õ£¬µÃ3an+1-3an+4£¨Sn-Sn-1£©=0£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}ÊǵȱÈÊýÁУ¬¼´¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©½«k½øÐзÖÀ룬ȻºóÌÖÂÛnµÄÆæż£¬¸ù¾ÝÊýÁеĵ¥µ÷ÐÔ¿ÉÇóº¯ÊýµÄ×îÖµ£¬ÓÉ´ËÄÜÇó³ökµÄ×î´óÖµ£®
£¨3£©ÌÖÂÛaÓë1µÄ´óС£¬Çó³ö¼¯ºÏA£¬µ±a¡Ý1ʱ£¬T2=a+a2£¬T2¡ÊA£¬¿ÉÇó³öa£¬µ±0£¼a£¼1ʱÇó³öTnµÄ·¶Î§£¬¶ÔÈÎÒâµÄn¡ÊN*£¬ÒªÊ¹Tn¡ÊA£¬½¨Á¢¹ØÓÚaµÄ²»µÈ¹Øϵ£¬½âÖ®¼´¿É£®
£¨2£©½«k½øÐзÖÀ룬ȻºóÌÖÂÛnµÄÆæż£¬¸ù¾ÝÊýÁеĵ¥µ÷ÐÔ¿ÉÇóº¯ÊýµÄ×îÖµ£¬ÓÉ´ËÄÜÇó³ökµÄ×î´óÖµ£®
£¨3£©ÌÖÂÛaÓë1µÄ´óС£¬Çó³ö¼¯ºÏA£¬µ±a¡Ý1ʱ£¬T2=a+a2£¬T2¡ÊA£¬¿ÉÇó³öa£¬µ±0£¼a£¼1ʱÇó³öTnµÄ·¶Î§£¬¶ÔÈÎÒâµÄn¡ÊN*£¬ÒªÊ¹Tn¡ÊA£¬½¨Á¢¹ØÓÚaµÄ²»µÈ¹Øϵ£¬½âÖ®¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâÖª£¬µ±n¡Ý2ʱ£¬
Á½Ê½Ïà¼õ±äÐεãº
=-
(n¡Ý2)
ÓÖn=1ʱ£¬a2=-
£¬ÓÚÊÇ
=-
¡£¨1·Ö£©
¹Ê {an}ÊÇÒÔa1=1ΪÊ×Ï¹«±Èq=-
µÄµÈ±ÈÊýÁСàan=
£¬(n¡ÊN*)¡£¨4·Ö£©
£¨2£©ÓÉS=
=
µÃ k£¼
Sn=1-
=f£¨n£©¡£¨5·Ö£©
µ±nÊÇżÊýʱ£¬f£¨n£©ÊÇnµÄÔöº¯Êý£¬ÓÚÊÇf(n)min=f(2)=
£¬¹Êk£¼
¡£¨7·Ö£©
µ±nÊÇÆæÊýʱ£¬f£¨n£©ÊÇnµÄ¼õº¯Êý£¬ÒòΪ
f(n)=1£¬¹Êk¡Ü1£®¡£¨9·Ö£©
×ÛÉÏËùÊö£¬kµÄÈ¡Öµ·¶Î§ÊÇ(-¡Þ£¬
)¡£¨10·Ö£©
£¨3£©¢Ùµ±a¡Ý1ʱ£¬A={x|1¡Üx¡Üa}£¬T2=a+a2£¬ÈôT2¡ÊA£¬Ôò1¡Üa+a2¡Üa£®µÃ
´Ë²»µÈʽ×éµÄ½â¼¯Îª¿Õ¼¯£®
¼´µ±a¡Ý1ʱ£¬²»´æÔÚÂú×ãÌõ¼þµÄʵÊýa£®¡£¨13·Ö£©
¢Úµ±0£¼a£¼1ʱ£¬A={x|a¡Üx¡Ü1}£®
¶øTn=a+a2+¡+an=
(1-an)ÊǹØÓÚnµÄÔöº¯Êý£®
ÇÒ
Tn=
£¬¹ÊTn¡Ê[a£¬
)£®¡£¨15·Ö£©
Òò´Ë¶ÔÈÎÒâµÄn¡ÊN*£¬ÒªÊ¹Tn¡ÊA£¬Ö»Ðè
½âµÃ0£¼a¡Ü
£®¡£¨18·Ö£©
|
an+1 |
an |
1 |
3 |
ÓÖn=1ʱ£¬a2=-
1 |
3 |
a2 |
a1 |
1 |
3 |
¹Ê {an}ÊÇÒÔa1=1ΪÊ×Ï¹«±Èq=-
1 |
3 |
1 |
(-3)n-1 |
£¨2£©ÓÉS=
1 | ||
1+
|
3 |
4 |
4 |
3 |
1 |
(-3)n |
µ±nÊÇżÊýʱ£¬f£¨n£©ÊÇnµÄÔöº¯Êý£¬ÓÚÊÇf(n)min=f(2)=
8 |
9 |
8 |
9 |
µ±nÊÇÆæÊýʱ£¬f£¨n£©ÊÇnµÄ¼õº¯Êý£¬ÒòΪ
lim |
n¡ú¡Þ |
×ÛÉÏËùÊö£¬kµÄÈ¡Öµ·¶Î§ÊÇ(-¡Þ£¬
8 |
9 |
£¨3£©¢Ùµ±a¡Ý1ʱ£¬A={x|1¡Üx¡Üa}£¬T2=a+a2£¬ÈôT2¡ÊA£¬Ôò1¡Üa+a2¡Üa£®µÃ
|
´Ë²»µÈʽ×éµÄ½â¼¯Îª¿Õ¼¯£®
¼´µ±a¡Ý1ʱ£¬²»´æÔÚÂú×ãÌõ¼þµÄʵÊýa£®¡£¨13·Ö£©
¢Úµ±0£¼a£¼1ʱ£¬A={x|a¡Üx¡Ü1}£®
¶øTn=a+a2+¡+an=
a |
1-a |
ÇÒ
lim |
n¡ú¡Þ |
a |
1-a |
a |
1-a |
Òò´Ë¶ÔÈÎÒâµÄn¡ÊN*£¬ÒªÊ¹Tn¡ÊA£¬Ö»Ðè
|
1 |
2 |
µãÆÀ£º±¾Ì⿼²éÊýÁеĵÝÍÆʽºÍÊýÁÐÐÔÖʵÄ×ÛºÏÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Òâ²»µÈʽºÍÊýÁеÄ×ÛºÏÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿