题目内容
3.设等差数列{an}的前n项和为Sn,a3+a4=16,S7=63.(1)求数列{an}的通项公式;
(2)设数列{$\frac{{a}_{1}}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn,求证:Tn<$\frac{1}{2}$.
分析 (1)由已知条件利用等差数列性质列出方程组求出首项与公差,由此能求出数列{an}的通项公式.
(2)由$\frac{{a}_{1}}{{a}_{n}{a}_{n+1}}$=$\frac{3}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,利用裂项求和法能证明Tn<$\frac{1}{2}$.
解答 解:(1)∵等差数列{an}的前n项和为Sn,a3+a4=16,S7=63,
∴$\left\{\begin{array}{l}{{a}_{1}+2d+{a}_{1}+3d=16}\\{7{a}_{1}+\frac{7×6}{2}d=63}\end{array}\right.$,
解得${a}_{{1}_{\;}}$=3,d=2,
∴an=3+(n-1)×2=2n+1.
(2)∵$\frac{{a}_{1}}{{a}_{n}{a}_{n+1}}$=$\frac{3}{(2n+1)(2n+3)}$=$\frac{3}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴数列{$\frac{{a}_{1}}{{a}_{n}{a}_{n+1}}$}的前n项和:
Tn=$\frac{3}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3})$
=$\frac{3}{2}(\frac{1}{3}-\frac{1}{2n+3})$
=$\frac{1}{2}-\frac{3}{4n+6}$$<\frac{1}{2}$,
∴Tn<$\frac{1}{2}$.
点评 本题考查数列的通项公式的求法,考查数列的前n项和小于$\frac{1}{2}$的证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
A. | (0,2] | B. | [$\frac{1}{2}$,2] | C. | [2,+∞) | D. | (0,$\frac{1}{2}$]∪[2,+∞) |
A. | 4 | B. | 10 | C. | 20 | D. | $-\frac{15}{2}$ |
A. | 35 | B. | 50 | C. | 62 | D. | 64 |