题目内容

已知函数f(x)=|x-1|+|x+1|(x∈R)
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;
(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
分析:(1)根据函数的解析式,我们判断f(-x)与f(x)的关系,进而根据函数奇偶性的定义可得函数的奇偶性,
(2)先将带绝对值的函数转化成分段函数的形式,进而结合分段函数的图象和性质及偶函数图象关于y轴对称,可得函数简图;
(3)根据(2)中函数简图,数形结合可在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
解答:解:(1)f(-x)=|-x-1|+|-x+1|=|x+1|+|x-1|=f(x)
∴f(x)是偶函数   
(2)原函数式可化为:
f(x)=
-2x,x<-1
2,-1≤x≤1
2x,x>1
;其图象如图所示,
由函数图象知,函数的值域为[2,+∞)  …(9分)
(3)由函数图象知,
当x=0或2时,f(x)=x+2.
结合图象可得,不等式的解集为{x|x<0或x>2}…(12分)
点评:本题考查的知识点是带绝对值的函数的图象和性质,函数奇偶性的判断,其中画出函数的图象是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网