题目内容

如图,已知OPQ是半径为1,圆心角为60°的扇形,∠POQ的平分线交弧PQ于点E,扇形POQ的内接矩形ABCD关于OE对称;设∠POB=α,矩形ABCD的面积为S.
(1)求S与α的函数关系f(α);
(2)求S=f(α)的最大值.
分析:(1)由题意可得△AOD为等边三角形,求得BC=2sin(
π
6
-α)=cosα-
3
sinα.再求得∠ABO=
π
6
-α,△OAB中,利用正弦定理求得AB=2sinα.
可得矩形ABCD的面积S=f(α)=AB•BC=2sinα(cosα-
3
sinα), (0<α<
π
6
)

(2)由(1)可得S=f(α)=2sin(2α+
π
3
)-
3
.再由 0<α<
π
6
,根据正弦函数的定义域和值域求得S=f(α)的最大值.
解答:解:(1)由题意可得AB∥OE∥CD,∴∠POE=∠PAB=
π
6
,∴∠OAD=
π
3
=∠ADO,∠BOC=
π
3
-2α,△AOD为等边三角形.
故BC=2sin(
π
6
-α)=2(
1
2
cosα-
3
2
sinα)=cosα-
3
sinα.
再由∠ABO=π-∠AOB-∠OAD-∠BAD=π-α-
π
3
-
π
2
=
π
6
-α,△OAB中,利用正弦定理可得
AB
sin∠AOB
=
OB
sin∠OAB

AB
sinα
=
1
sin(
π
3
+
π
2
)
,化简可得AB=2sinα.
故矩形ABCD的面积S=f(α)=AB•BC=2sinα(cosα-
3
sinα), (0<α<
π
6
)

(2)由(1)可得S=f(α)=2sinαcosα-2
3
sin2α=sin2α+
3
cos2α-
3
=2(
1
2
sin2α+
3
2
cos2α)-
3

=2sin(2α+
π
3
)-
3

再由 0<α<
π
6
可得
π
3
<2α+
π
3
3
,故当 2α+
π
3
=
π
2
,即当α=
π
12
时,S=f(α)取得最大值为2-
3
点评:本题主要考查直角三角形中的边角关系、两角和差的三角公式、正弦函数的定义域和值域,正弦定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网