题目内容

【题目】某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.

1)假设某一天小张抽查出不合格的零件数为,求的数学期望

2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.

附:若随机变量服从正态分布,则

【答案】1)见解析(2)需要,见解析

【解析】

(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得

2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.

1,

由于满足二项分布,故.

2)由题意可知不合格率为,

若不检查,损失的期望为

若检查,成本为,由于,

充分大时,,

所以为了使损失尽量小,小张需要检查其余所有零件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网