题目内容
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;
(2)若数列bn满足bn=log2(an+2),Tn为数列{
| bn |
| an+2 |
(3)(只理科作)接(2)中的Tn,求证:Tn≥
| 1 |
| 2 |
分析:(1)由Sn与an的关系Sn=2an-2n利用仿写的方法消去Sn得到an+2=2(an-1+2),再利用等比数列的定义求出an=2n+1-2.
(2)由(1)得数列{an}的通项公式an=2n+1-2所以bn=n+1∴
=
利用错位相减可得∴Tn=
-
.
(3)利用Tn-Tn-1=-
+
=
>0证明Tn是递增数列,求其最小值即可.
(2)由(1)得数列{an}的通项公式an=2n+1-2所以bn=n+1∴
| bn |
| an+2 |
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
(3)利用Tn-Tn-1=-
| n+3 |
| 2n+1 |
| n+2 |
| 2n |
| n+1 |
| 2n+1 |
解答:解:(1)当n∈N+时,Sn=2an-2n,
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
∴
=2,n=1时 S1=2a1-2,∴a1=2
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4•2n-1=2n+1,
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.
∴
=
,
则Tn=
+
+…+
,
∴
Tn=
+
+…+
+
④
③-④,
Tn=
+
+
…+
-
=
+
-
=
+
-
-
=
-
∴Tn=
-
.
(3)n≥2时Tn-Tn-1=-
+
=
>0,
∴{Tn}为递增数列
∴Tn的最小值是T1=
∴Tn≥
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
∴
| an+2 |
| an-1+2 |
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4•2n-1=2n+1,
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.
∴
| bn |
| an+2 |
| n+1 |
| 2n+1 |
则Tn=
| 2 |
| 22 |
| 3 |
| 23 |
| n+1 |
| 2n+1 |
∴
| 1 |
| 2 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
| n+1 |
| 2n+2 |
③-④,
| 1 |
| 2 |
| 2 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
| 1 |
| 4 |
| ||||
1-
|
| n+1 |
| 2n+1 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n+1 |
| 2n+2 |
=
| 3 |
| 4 |
| n+3 |
| 2n+2 |
∴Tn=
| 3 |
| 2 |
| n+3 |
| 2n+1 |
(3)n≥2时Tn-Tn-1=-
| n+3 |
| 2n+1 |
| n+2 |
| 2n |
| n+1 |
| 2n+1 |
∴{Tn}为递增数列
∴Tn的最小值是T1=
| 1 |
| 2 |
∴Tn≥
| 1 |
| 2 |
点评:本题考查Sn与an以及错位相减法的运用,求通项与求和是高考的热点,数列与不等式相结合的综合题也是常考内容,此类问题多与数列的单调性相关.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |