题目内容

20.已知直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A.1B.2C.3D.4

分析 抛物线y2=4x上一动点P到直线l1和直线l2的距离之和转化为:抛物线y2=4x上一动点P到直线l1和直线x=1的距离之和,x=-1是抛物线y2=4x的准线,则P到x=-1的距离等于PF,抛物线y2=4x的焦点F(1,0)过P作4x-3y+6=0垂线,和抛物线的交点就是P,所以点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值就是F(1,0)到直线4x-3y+6=0距离.

解答 解:x=-1是抛物线y2=4x的准线,则P到x=-1的距离等于PF,
抛物线y2=4x的焦点F(1,0)
过P作4x-3y+6=0垂线,和抛物线的交点就是P,
所以点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值
就是F(1,0)到直线4x-3y+6=0距离,
所以最小值=$\frac{|4-0+6|}{\sqrt{{4}^{2}+{(-3)}^{2}}}$=2.
直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是:2-1=1
故选:A.

点评 本题考查点到直线的距离公式的求法,是中档题.解题时要认真审题,注意抛物线的性质的灵活运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网