题目内容
(本题满分12分)已知函数(I)试用含a的式子表示b,并求函数的单调区间;(II)已知为函数图象上不同两点,为AB的中点,记A、B两点连线的斜率为k,证明:
略
解析
已知(I)a=2时,求和的公共点个数;(II)a为何值时,的公共点个数恰为两个。
(本小题满分14分)已知函数和的图象关于原点对称,且. (Ⅰ)求函数的解析式; (Ⅱ)解不等式; (Ⅲ)若在上是增函数,求实数的取值范围.
随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数,每人每年可创利10万元.据评估,在经营条件不变的前提下,若裁员x人,则留岗职员每人每年多创利0.1x万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人?
(本小题满分12分)已知,函数(1)求的反函数;(2)若在[0,1]上的最大值与最小值互为相反数,求;(3)若的图像不经过第二象限,求的取值范围
(本小题满分12分)已知函数,其图象过点(,).(1)求的值及最小正周期;(2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在[0, ]上的最大值和最小值.
(本小题满分14分)设二次函数满足下列条件:①当时,其最小值为0,且成立;②当时,恒成立.(1)求的值;(2)求的解析式;(3)求最大的实数,使得存在,只要当时,就有成立
(本大题满分12分)某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论并说明理由
(12分) 已知函数 ,x ∈[ 3 , 5 ] ,(1)用定义证明函数的单调性;(2)求函数的最大值和最小值。