题目内容

过双曲线(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是( )
A.
B.
C.2
D.
【答案】分析:根据OM⊥PF,且FM=PM判断出△POF为等腰直角三角形,推断出∠OFP=45°,进而在Rt△OFM中求得半径a和OF的关系,进而求得a和c的关系,则双曲线的离心率可得.
解答:解:∵OM⊥PF,且FM=PM
∴OP=OF,
∴∠OFP=45°
∴|0M|=|OF|•sin45°,即a=c•
∴e==
故选A
点评:本题主要考查了双曲线的简单性质.解题的关键是利用圆的切线的性质和数形结合的数学思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网