题目内容
【题目】已知函数f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求实数m的取值范围.
【答案】
(1)解:函数f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )]
=2cos(x+ )sin(x+ )﹣2 cos2(x+ )
=sin(2x+ )﹣2
=sin(2x+ )﹣ cos(2x+ )﹣
=2sin[(2x+ )﹣ ]﹣
=2sin(2x+ )﹣ ,
∴函数f(x)的最小正周期为T= = =π;
又﹣1≤sin(2x+ )≤1,
∴﹣2﹣ ≤2sin(2x+ )﹣ ≤2﹣ ,
即f(x)的值域为[﹣2﹣ ,2﹣ ];
(2)解:对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,
∴[2sin(2x+ )﹣ + ]﹣2m=0,
即sin(2x+ )=m;
由x∈[0, ],得2x+ ∈[ , ],
∴sin(2x+ )∈[ ,1],
∴实数m的取值范围是m∈[ ,1].
【解析】(1)化简函数f(x)为正弦型函数,求出它的最小正周期和值域;(2)对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,等价于sin(2x+ )=m;求出x∈[0, ]时sin(2x+ )的值域即可.
练习册系列答案
相关题目