题目内容

【题目】已知函数f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求实数m的取值范围.

【答案】
(1)解:函数f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )]

=2cos(x+ )sin(x+ )﹣2 cos2(x+

=sin(2x+ )﹣2

=sin(2x+ )﹣ cos(2x+ )﹣

=2sin[(2x+ )﹣ ]﹣

=2sin(2x+ )﹣

∴函数f(x)的最小正周期为T= = =π;

又﹣1≤sin(2x+ )≤1,

∴﹣2﹣ ≤2sin(2x+ )﹣ ≤2﹣

即f(x)的值域为[﹣2﹣ ,2﹣ ];


(2)解:对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,

∴[2sin(2x+ )﹣ + ]﹣2m=0,

即sin(2x+ )=m;

由x∈[0, ],得2x+ ∈[ ],

∴sin(2x+ )∈[ ,1],

∴实数m的取值范围是m∈[ ,1].


【解析】(1)化简函数f(x)为正弦型函数,求出它的最小正周期和值域;(2)对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,等价于sin(2x+ )=m;求出x∈[0, ]时sin(2x+ )的值域即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网