题目内容
如图,在四棱锥S﹣ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,且AB=AD=1,BC=3,SB与平面ABCD所成的角为45°,E为SD的中点.
(Ⅰ)若F为线段BC上的一点且BF=
BC,求证:EF∥平面SAB;
(Ⅱ)求点B到平面SDC的距离;
(Ⅲ)在线段 BC上是否存在一点G,使二面角G﹣SD﹣C的大小为arccos
若存在,求出BG的长;若不存在,说明理由.
(Ⅰ)若F为线段BC上的一点且BF=
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120817/20120817153028092588.png)
(Ⅱ)求点B到平面SDC的距离;
(Ⅲ)在线段 BC上是否存在一点G,使二面角G﹣SD﹣C的大小为arccos
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120817/20120817153028137925.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251439583247099.png)
解:(Ⅰ) 取SA的中点H,连接EH,BH.
由HE∥AD,BF∥AD,且HE=
∴HE∥BF,BF=HE,
∴四边形EFBH为平行四边形.
∴EF∥BH,BH
平面SAB,EF
平面SAB,
∴EF∥平面SAB.
(Ⅱ)∵SA⊥底面ABCD
∴∠SBA是AB与平面ABCD所成的角
∴∠SBA=45°,SA=AB=1
以A为原点,AB为x轴,图所示建立直角坐标系,
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251439590234027.png)
则B(1,0,0),S(0,0,1),D(0,1,0)C(1,3,0)
∴
=(1,2,0)
=(0.﹣1.1)
=(0,3,0)
设
=(x1,y1,z1)是平SDC的法向量,则
=0,
=0
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251439599211939.png)
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440000991638.png)
取![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440002151255.png)
B到平SDC的距离为d=
=![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144000447751.png)
(Ⅲ) 假设存在,设BG=a,则G(1,a,0)(0<a<3)
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440005641386.png)
设
=(x2,y2,z2)是平面DGS的法向量,则
=0,
=0
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440011062356.png)
取![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440012241346.png)
由
=
,得a2=2+(1﹣a)2
∴
,
故线段 BC上存在一点G存在G点满足要求.且![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144001702849.png)
由HE∥AD,BF∥AD,且HE=
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143958481835.png)
∴HE∥BF,BF=HE,
∴四边形EFBH为平行四边形.
∴EF∥BH,BH
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143958629235.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143958752226.png)
∴EF∥平面SAB.
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251439588894069.png)
(Ⅱ)∵SA⊥底面ABCD
∴∠SBA是AB与平面ABCD所成的角
∴∠SBA=45°,SA=AB=1
以A为原点,AB为x轴,图所示建立直角坐标系,
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251439590234027.png)
则B(1,0,0),S(0,0,1),D(0,1,0)C(1,3,0)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143959137491.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143959254508.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143959413508.png)
设
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143959568372.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143959689447.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925143959804447.png)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251439599211939.png)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440000991638.png)
取
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440002151255.png)
B到平SDC的距离为d=
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440003311591.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144000447751.png)
(Ⅲ) 假设存在,设BG=a,则G(1,a,0)(0<a<3)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440005641386.png)
设
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144000723440.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440008391003.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144000976791.png)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440011062356.png)
取
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440012241346.png)
由
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440013411964.png)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/201209251440014582004.png)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144001581679.png)
故线段 BC上存在一点G存在G点满足要求.且
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120925/20120925144001702849.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目