题目内容

已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-
n(n-1)
2
,(n≥2,n∈N*)

(I)求数列{an}的通项公式;
(II) 已知bn>an,(n≥2,n∈N*),求证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
3e
分析:(I)直接利用sn=nan+2-
n(n-1)
2
,构造新等式求出求数列{an}的递推公式,找到数列{an}的项的规律进而求出数列{an}的通项公式;
(II) 先构造函数f(x)=ln(1+x)-x,利用函数的单调性来对ln(1+
1
bnbn+1
)的通项进行放缩,再利用裂项求和法求和即可证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
3e
..
解答:解:(I)当n≥3时,由sn=nan+2-
n(n-1)
2

Sn-1=(n-1)an-1+2-
(n-1)(n-2)
2

可得an=nan-(n-1)an-1-
n-1
2
×2

故an-an-1=1(n≥3,n∈N+).
所以an=
4     n=1
n+1      n≥2

(II)设f(x)=ln(1+x)-x,则f'(x)=
1
1+x
-1=
-x
1+x
<0,
故f(x)在(0,+∞)上单调递减,∴f(x)<f(0),即ln(1+x)<x
∵n≥2时,
1
bn
1
an
=
1
n+1
,ln(1+
1
bnbn+1
)<
1
bnbn+1
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴ln(1+
1
b2b3
)+ln(1+
1
b3• b4
)+…+ln(1+
1
bnbn+1
)<
1
3
-
1
4
+
1
4
-
1
5
+…+
1
n+1
-
1
n+2
=
1
3
-
1
n+2
1
3

∴(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
3e
点评:本题考查了已知前n项和为Sn求数列{an}的通项公式,根据an和Sn的关系:an=Sn-Sn-1 (n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:an=Sn-Sn-1 (n≥1);若不成立,则通项公式为分段函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网