题目内容
定义在R上的函数f(x)满足,当x>2时,f(x)单调递增,如果x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值( )
A.恒小于0 | B.恒大于0 | C.可能为0 | D.可正可负 |
A
因为(x1-2)(x2-2)<0,若x1<x2,则有x1<2<x2,即2<x2<4-x1,又当x>2时,f(x)单调递增且f(4-x)=f(x),所以有f(x2)<f(4-x1)=-f(x1),f(x1)+f(x2)<0;若x2<x1,同理有f(x1)+f(x2)<0,故选A.
练习册系列答案
相关题目