题目内容
在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场)共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为;(1)求甲队获第一名且丙队获第二名的概率;
(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列和数学期望.
【答案】分析:(1)设甲队获第一且丙队获第二为事件A,则甲赢两场,丙胜一场,由乘法公式求解即可;
(2)ξ可能的取值为0,3,6,分别计算出相应的概率,列出分布列,再由公式求出期望值即可;
解答:解:(1)设甲队获第一且丙队获第二为事件A,则P(A)==
(2)ξ可能的取值为0,3,6;则
甲两场皆输:P(ξ=0)=(1-)(1-)=
甲两场只胜一场:P(ξ=3)=×(1-)+×(1-)=
甲两场皆胜:P(ξ=6)==
∴ξ的分布列为
Eξ=0×+3×+6×=
点评:本题考查离散型随机事件的分布列与期望及方差,解题关键是正确理解“甲队获第一名且丙队获第二名”这个事件,且能用概率的乘法公式求出其概率,本题涉及到的公式较多,综合性较强.
(2)ξ可能的取值为0,3,6,分别计算出相应的概率,列出分布列,再由公式求出期望值即可;
解答:解:(1)设甲队获第一且丙队获第二为事件A,则P(A)==
(2)ξ可能的取值为0,3,6;则
甲两场皆输:P(ξ=0)=(1-)(1-)=
甲两场只胜一场:P(ξ=3)=×(1-)+×(1-)=
甲两场皆胜:P(ξ=6)==
∴ξ的分布列为
Eξ=0×+3×+6×=
点评:本题考查离散型随机事件的分布列与期望及方差,解题关键是正确理解“甲队获第一名且丙队获第二名”这个事件,且能用概率的乘法公式求出其概率,本题涉及到的公式较多,综合性较强.
练习册系列答案
相关题目