题目内容
【题目】已知函数.
(1)讨论函数f(x)的单调性;
(2)若函数g(x)=f(x)﹣lnx有2个不同的极值点x1,x2(x1<x2),求证:.
【答案】(1)见解析;(2)见解析
【解析】
(1)求导得到,讨论四种情况得到单调性.
(2)g(x)=alnxx﹣1,,得到x1+x2=a,x1x2=a,f(x1)+f(x2)﹣2x1x2=alna+lna﹣2a﹣2,设g(a)=alna+lna﹣2a﹣2,(a>4),根据函数的单调性得到答案.
(1),x>0,
(i)若a=1,0恒成立,故f(x)在(0,+∞)单调递减,
(ii)当a>1时,x∈(0,1)时,f′(x)<0,函数单调递减,当x∈(1,a),f′(x)>0,函数单调递增,当x∈(a,+∞),f′(x)<0,函数单调递减,
(iii)0<a<1时,x∈(0,a)时,f′(x)<0,函数单调递减,当x∈(a,1),f′(x)>0,函数单调递增,当x∈(1,+∞),f′(x)<0,函数单调递减,
(iv)当a≤0时,x∈(0,1)时,f′(x)>0,函数单调递增,当x∈(1,+∞),f′(x)<0,函数单调递减.
(2)g(x)=f(x)﹣lnx=alnxx﹣1,,
由题意可得,x2﹣ax+a=0与2个不同的根x1,x2(x1<x2),
则x1+x2=a>0,x1x2=a,△=a2﹣4a>0,所以a>4,
∴f(x1)+f(x2)﹣2x1x2=a(lnx1+lnx2)+a()+(lnx1+lnx2)﹣(x1+x2)﹣2﹣2x1x2=alna+lna﹣2a﹣2,
令g(a)=alna+lna﹣2a﹣2,(a>4),
则2=lna1>0,即g(a)在(4,+∞)上单调递增,
所以g(a)>g(4)=5ln4﹣10=5(ln4﹣2)=5(ln4﹣lne2)=5.得证.
【题目】2020年1月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最有效的方式.在家中适当锻炼,合理休息,能够提高自身免疫力,抵抗该种病毒.某小区为了调查“宅”家居民的运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:
(1)求a的值,并估计这100位居民锻炼时间的平均值(同一组中的数据用该组区间的中点值代表);
(2)小张是该小区的一位居民,他记录了自己“宅”家7天的锻炼时长:
序号n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
锻炼时长m(单位:分钟) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根据数据求m关于n的线性回归方程;
(Ⅱ)若(是(1)中的平均值),则当天被称为“有效运动日”.估计小张“宅”家第8天是否是“有效运动日”?
附;在线性回归方程中,,.
【题目】某总公司在A,B两地分别有甲、乙两个下属公司同时生产某种新能源产品(这两个公司每天都固定生产50件产品),所生产的产品均在本地销售.产品进入市场之前需要对产品进行性能检测,得分低于80分的定为次品,需要返厂再加工;得分不低于80分的定为正品,可以进入市场.检测员统计了甲、乙两个下属公司100天的生产情况及每件产品盈利亏损情况,数据如下表所示:
表1:
甲公司 | 得分 | |||||
件数 | 10 | 10 | 40 | 40 | 50 | |
天数 | 10 | 10 | 10 | 10 | 80 |
表2:
乙公司 | 得分 | |||||
件数 | 10 | 5 | 40 | 45 | 50 | |
天数 | 20 | 10 | 20 | 10 | 70 |
表3:
每件正品 | 每件次品 | |
甲公司 | 盈2万元 | 亏3万元 |
乙公司 | 盈3万元 | 亏3.5万元 |
(1)分别求甲、乙两个公司这100天生产的产品的正品率(用百分数表示);
(2)试问甲乙两个公司这100天生产的产品的总利润哪个更大?说明理由.