题目内容
【题目】已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是 .
(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.F,G是曲线D上不同的两点,对于定点Q(﹣3,0),有|QF||QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
【答案】解:(Ⅰ)设动点P的坐标为(x,y),
则由|PO|=|PA|得λ(x2+y2)=(x﹣3)2+y2 ,
整理得:(λ﹣1)x2+(λ﹣1)y2+6x﹣9=0,
∵λ>0,∴当λ=1时,方程可化为:2x﹣3=0,方程表示的曲线是线段OA的垂直平分线;
当λ≠1时,则方程可化为,+y2=,
即方程表示的曲线是以(﹣,0)为圆心,为半径的圆.
(Ⅱ)当λ=4时,曲线D的方程是x2+y2+2x﹣3=0,
故曲线D表示圆,圆心是D(﹣1,0),半径是2.
设点Q到直线FG的距离为d,∠FQG=θ,
则由面积相等得到|QF||QG|sinθ=d|FG|,且圆的半径r=2.
即d===1.于是顶点Q到动直线FG的距离为定值,
即动直线FG与定圆(x+3)2+y2=1相切.
【解析】(Ⅰ)设动点P的坐标为(x,y),由|PO|=|PA|代入坐标整理得(λ﹣1)x2+(λ﹣1)y2+6x﹣9=0,对λ分类讨论可得;
(Ⅱ)当λ=4时,曲线D的方程是x2+y2+2x﹣3=0,则由面积相等得到|QF||QG|sinθ=d|FG|,且圆的半径r=2,由点到直线的距离公式以及直线和圆的位置关系可得.
【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:
愿意被外派 | 不愿意被外派 | 合计 | |
后 | |||
后 | |||
合计 |
(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为;后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率.
参考数据:
(参考公式:,其中).