题目内容

6.高为1的四棱锥S-ABCD的底面是边长为2的正方形,点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\sqrt{2}$

分析 由正方形的性质算出ABCD所在的平面小圆半径为r=$\sqrt{2}$.四棱锥S-ABCD的高为1,得到S在平行于ABCD所在平面且距离等于1的平面α上,由此结合球的截面圆性质和勾股定理加以计算,即可算出底面ABCD的中心与顶点S之间的距离.

解答 解:由题意,设正方形ABCD的中心为G,可得
∵ABCD所在的圆是小圆,对角线长为2$\sqrt{2}$,即小圆半径为r=$\sqrt{2}$
∵点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,
∴球心到小圆圆心的距离OG=$\frac{3}{2}$,
∵四棱锥S-ABCD的高为1,
∴点S与ABCD所在平面的距离等于1,
设平面α∥平面ABCD,且它们的距离等于1,平面α截球得小圆的圆心为H,
则OH=$\frac{1}{2}$,
∴Rt△SOH中,SH2=OS2-OH2=R2-($\frac{1}{2}$)2=4,
可得SG$\sqrt{4+1}$=$\sqrt{5}$,即底面ABCD的中心G与顶点S之间的距离为$\sqrt{5}$
故选:C.

点评 本题给出四棱锥的四个顶点在同一个球面上,求它的顶点到底面中心的距离.着重考查了正方形的性质、球的截面圆性质和勾股定理等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网