题目内容
6.高为1的四棱锥S-ABCD的底面是边长为2的正方形,点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心与顶点S之间的距离为( )A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{2}$ |
分析 由正方形的性质算出ABCD所在的平面小圆半径为r=$\sqrt{2}$.四棱锥S-ABCD的高为1,得到S在平行于ABCD所在平面且距离等于1的平面α上,由此结合球的截面圆性质和勾股定理加以计算,即可算出底面ABCD的中心与顶点S之间的距离.
解答 解:由题意,设正方形ABCD的中心为G,可得
∵ABCD所在的圆是小圆,对角线长为2$\sqrt{2}$,即小圆半径为r=$\sqrt{2}$
∵点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,
∴球心到小圆圆心的距离OG=$\frac{3}{2}$,
∵四棱锥S-ABCD的高为1,
∴点S与ABCD所在平面的距离等于1,
设平面α∥平面ABCD,且它们的距离等于1,平面α截球得小圆的圆心为H,
则OH=$\frac{1}{2}$,
∴Rt△SOH中,SH2=OS2-OH2=R2-($\frac{1}{2}$)2=4,
可得SG$\sqrt{4+1}$=$\sqrt{5}$,即底面ABCD的中心G与顶点S之间的距离为$\sqrt{5}$
故选:C.
点评 本题给出四棱锥的四个顶点在同一个球面上,求它的顶点到底面中心的距离.着重考查了正方形的性质、球的截面圆性质和勾股定理等知识,属于中档题.
练习册系列答案
相关题目
17.在棱长为$\sqrt{6}$的正方体ABCD-A1B1C1D1中,D1到B1C的距离为( )
A. | $\sqrt{6}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 3 |
14.某中学高二年级举行数学竞赛,共有800名学生参加.为了了解本次竞赛成绩,从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计.请你根据频率分布表,解答下列问题:
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
分组(分数) | 频数 | 频率 |
[60,70) | 0.12 | |
[70,80) | 20 | |
[80,90) | 0.24 | |
[90,100] | 12 | |
合计 | 50 | 1 |
1.有一个三棱锥与一个四棱锥,棱长都相等,它们的一个侧面重叠后,还有暴露面的个数为( )
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
15.已知球O的表面积为12π,则球O的体积为( )
A. | 2$\sqrt{3}$π | B. | 4$\sqrt{3}$π | C. | 12$\sqrt{3}$π | D. | 32$\sqrt{3}$π |