题目内容
已知数列满足,.(1)求证:数列为等差数列;(2)求数列的通项公式;(3)当时,若求的值.
(1)详见解析;(2);(3)
解析
(2013·杭州模拟)已知数列{an}的前n项和Sn=-an-n-1+2(n∈N*),数列{bn}满足bn=2nan.(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn>.(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn.
在等差数列中,,.令,数列的前项和为.(1)求数列的通项公式和;(2)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.
已知公比不为的等比数列的首项,前项和为,且成等差数列.(1)求等比数列的通项公式;(2)对,在与之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和.
设是首项为,公差为的等差数列(d≠0),是其前项和.记bn=,,其中为实数.(1) 若,且,,成等比数列,证明:Snk=n2Sk(k,n∈N+);(2) 若是等差数列,证明:.
设等差数列{}的前n项和为S,且S3=2S2+4,a5=36.(1)求,Sn;(2)设,,求Tn
设等差数列{ }的前n项和为Sn,且S4=4S2,.(1)求数列{}的通项公式;(2)设数列{ }满足,求{}的前n项和Tn;(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.
设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()(1)求数列{an}的通项公式;(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;②求证:.
已知数列的前项和为,,若成等比数列,且时,.(1)求证:当时,成等差数列;(2)求的前n项和.