题目内容
若等差数列{an}与等比数列{bn}的首项是相等的正数,且它们的第2n+1项也相等,则有( )
A.an+1<bn+1 | B.an+1≤bn+1 | C.an+1≥bn+1 | D.an+1>bn+1 |
因为等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a2n+1=b2n+1,
所以an+1-bn+1=
-
=
=
≥0.
即 an+1≥bn+1.
故选C.
所以an+1-bn+1=
a1+a2n+1 |
2 |
b1•b2n+1 |
a1+a2n+1-2
| ||
2 |
(
| ||||
2 |
即 an+1≥bn+1.
故选C.
练习册系列答案
相关题目
若等差数列{an}与等比数列{bn}的首项是相等的正数,且它们的第2n+1项也相等,则有( )
A、an+1<bn+1 | B、an+1≤bn+1 | C、an+1≥bn+1 | D、an+1>bn+1 |