题目内容
【题目】如图,直三棱柱中,分别是的中点,.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)连接交于点,由三角形中位线定理得,由此能证明平面.
(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.
证明:证明:连接交于点,
则为的中点.又是的中点,
连接,则.
因为平面,平面,
所以平面.
(2)由,可得:,即
所以
又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系, 则,
设平面的法向量为,则且,可解得,令,得平面的一个法向量为,
同理可得平面的一个法向量为,
则
所以二面角的余弦值为.
练习册系列答案
相关题目