题目内容

在△ABC中,D是BC边上一点,BD=3DC,若P是AD边上一动点,AD=2
(Ⅰ)设
PB
=
a
PC
=
b
,用
a
b
表示向量
PD

(Ⅱ)求
PA
•(
PB
+3
PC
)
的最小值.
分析:(I)先分别利用
PD
PB
表示
BD
CD
,然后结合
BD
=3
DC
,代入即可求解
(II)由(Ⅰ)可知
PB
+3
PC
=4
PD
,先|
PA
|=x(0≤x≤2)
,代入利用向量的数量积的定义及二次函数的性质即可求解
解答:解:(Ⅰ)依题
BD
=
PD
-
PB
CD
=
PD
-
PC

BD
=-3
CD
所以
PD
-
PB
=-3(
PD
-
PC
)

整理可得4
PD
=
PB
+3
PC
PD
=
1
4
a
+
3
4
b

(Ⅱ)由(Ⅰ)可知
PB
+3
PC
=4
PD

|
PA
|=x(0≤x≤2)
PA
•(
PB
+3
PC
)
=
PA
•(4
PD
)
=-4x(2-x)≥-4
所以当x=1时
PA
•(
PB
+3
PC
)
的最小值为-4
点评:本题主要考查了向量的数量积的定义及向量的基本运算的简单应用,解题时要准确利用基本公式
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网