题目内容
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1.
(1)试求常数a、b、c的值;
(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由
【答案】
略
【解析】略
练习册系列答案
相关题目
已知f(x)=ax3+ln(
+x)+2,且f(-5)=m,则f(5)+f(-5)的值为( )
x2+1 |
A、4 | B、0 | C、2m | D、-m+4 |
已知f(x)=ax3+
(ab≠0),对任意a,b∈R(a≠b),都有
>0.若x1+x2<0,且x1?x2<0,则f(x1)+f(x2)的值( )
b |
x |
f(a)-f(b) |
a-b |
A、恒小于0 | B、恒大于0 |
C、可能为0 | D、可正可负 |