题目内容
已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是.
(1)求椭圆的标准方程;
(2)直线过点且与椭圆交于,两点,若,求直线的方程.
(1);(2)和.
解析试题分析:(1)由题设条件知关于a,b,c的方程组,由此能求出椭圆方程.
(2)可以设直线方程(斜率不存在单独考虑),然后与椭圆方程联立,消去y得到关于x的一元二次方程,利用韦达定理结合题目条件建立方程即可求出直线方程.
试题解析:(1)设椭圆的方程为.
由已知可得 3分
解得,.
故椭圆的方程为. 6分
(2)由已知,若直线的斜率不存在,则过点的直线的方程为,
此时,显然不成立. 7分
若直线的斜率存在,则设直线的方程为.
则
整理得. 9分
由
.
设.
故,① . ② 10分
因为,即.③
①②③联立解得. 13分
所以直线的方程为和. 14分
考点:(1)椭圆标准方程;(2)直线与圆锥曲线的位置关系.
练习册系列答案
相关题目