题目内容
如图所示,在直角坐标系xOy中,点P
到抛物线C:y2=2px(p>0)的准线的距离为
.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240409045242681.jpg)
(1)求p,t的值;
(2)求△ABP面积的最大值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904353629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904509353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240409045242681.jpg)
(1)求p,t的值;
(2)求△ABP面积的最大值.
(1)
(2) ![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904556464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904540743.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904556464.png)
解:(1)由题意知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904571978.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904540743.png)
(2)由(1)知M(1,1),
直线OM的方程为y=x,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240409046022706.jpg)
设A(x1,y1),B(x2,y2),线段AB的中点为Q(m,m).
由题意知,
设直线AB的斜率为k(k≠0).
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904618818.png)
得(y1-y2)(y1+y2)=x1-x2,
故k·2m=1,
所以直线AB的方程为y-m=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904634463.png)
即x-2my+2m2-m=0.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240409046491146.png)
整理得y2-2my+2m2-m=0,
所以Δ=4m-4m2>0,
y1+y2=2m,y1y2=2m2-m.
从而|AB|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904665555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904680578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904696587.png)
设点P到直线AB的距离为d,
则d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904743842.png)
设△ABP的面积为S,则
S=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904758339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904774510.png)
由Δ=4m-4m2>0,得0<m<1.
令u=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904774510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904758339.png)
设S(u)=u(1-2u2),0<u≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904758339.png)
由S′(u)=0,得u=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904883421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904899665.png)
因此S(u)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904914789.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904930840.png)
所以S(u)max=S
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904946686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904556464.png)
故△ABP面积的最大值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040904556464.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目