题目内容
如图所示,SA⊥正方形ABCD所在平面,过A作与SC垂直的平面分别交SB、SC、SD于E、K、H,求证:E、H分别是点A在直线SB和SD上的射影.
如图所示,已知圆的方程是(x-1)2+y2=1,四边形PABQ为该圆内接梯形,底边AB为圆的直径且在x轴上,以A,B为焦点的椭圆C过P,Q两点.
(1)若直线QP与椭圆C的右准线相交于点M,求点M的轨迹方程;
(2)当梯形PABQ周长最大时,求椭圆C的方程.
如图所示,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,E是B1C的中点.
(1)求cos(,).
(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出||;若不存在,请说明理由.
如图所示,椭圆方程为+=1(a>b>0),A,P,F分别为左顶点,上顶点,右焦点,E为x轴正方向上一点,且||,||,||成等比数列.又点N满足=(+),PF的延长线与椭圆的交点为Q,过Q与x轴平行的直线与PN的延长线交于M.
(1)求证:·=·.
(2)若=2,且||=,求椭圆方程.
如图所示,某电子器件是由三个电阻组成的回路,其中共有六个焊接点A,B,C,D,E,F,如果某个焊接点脱落,整个电路就会不通.
(1)求因焊接点脱落致使电路不通的所有不同的脱落种数.
(2)每个焊接点脱落的概率均是,现在发现电路不通了,那么至少有两个焊接点脱落的概率是多少?
解答题
如图所示,已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.
(1)
建立适当的坐标系,求椭圆方程;
(2)
如果椭圆上有两点P、Q,使∠PCQ的平分线垂直于AO,证明:.