ÌâÄ¿ÄÚÈÝ
16£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðF1¡¢F2£¬¶¯Ö±ÏßlÓëÍÖÔ²ÏàÇÐÓÚµãP£¬×÷F1A£¬F2B´¹Ö±ÓÚÖ±Ïßl£¬´¹×ã·Ö±ðΪA£¬B£¬¼Ç¦Ë=$\frac{B{F}_{2}}{A{F}_{1}}$£®µ±PΪ×󶥵ãʱ£¬¦Ë=9£¬ÇÒ¦Ë=1ʱ£¬ËıßÐÎAF1F2BµÄÖܳ¤Îª22£®£¨1£©ÊÔÈ·¶¨ÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÇóÖ¤£ºBF2•AF1Ϊ¶¨Öµ£®
·ÖÎö £¨1£©Í¨¹ýµ±PΪ×󶥵ãʱ¦Ë=9¼°PF2-PF1=2c£¬µÃ4a=5c£¬ÔÙͨ¹ý¦Ë=1ʱËıßÐÎAF1F2BµÄÖܳ¤Îª22£¬¿ÉÖªb+2c=11£¬¼ÆËã¼´¿É£»
£¨2£©ÉèÖ±ÏßlÓë×ø±êÖáµÄ½»µã·Ö±ðΪM£¨m£¬0£©£¬N£¨0£¬n£©£¬£¨m¡¢n£¾0£©£¬Í¨¹ýÖ±ÏßlµÄ·½³Ìnx+my-mn=0£¬¿ÉµÃBF2=$\frac{|4n-mn|}{\sqrt{{m}^{2}+{n}^{2}}}$£¬AF1=$\frac{4n+mn}{\sqrt{{m}^{2}+{n}^{2}}}$£¬ÔÙÀûÓÃÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬¼´9m2+9n2+16n2-m2n2=0£¬¿ÉµÃBF2•AF1=9£®
½â´ð £¨1£©½â£ºµ±PΪ×󶥵ãʱ£¬¦Ë=9£¬¼´PF2=9PF1£¬
ÓÖ¡ßPF2-PF1=2c£¬¡àc=4PF1=4a-4c£¬¼´4a=5c£¬
µ±¦Ë=1ʱ£¬ËıßÐÎAF1F2BµÄÖܳ¤Îª22£¬
¼´2b+4c=22£¬¡àb+2c=11£¬
ÓÖ¡ßa2-b2=c2£¬¡àa=5£¬b=3£¬c=4£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$£»
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©ÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬
ÉèÖ±ÏßlÓë×ø±êÖáµÄ½»µã·Ö±ðΪM£¨m£¬0£©£¬N£¨0£¬n£©£¬£¨m¡¢n£¾0£©£¬
ÔòÖ±ÏßlµÄ·½³ÌΪ£ºnx+my-mn=0£¬
¡àBF2=$\frac{|4n-mn|}{\sqrt{{m}^{2}+{n}^{2}}}$£¬AF1=$\frac{4n+mn}{\sqrt{{m}^{2}+{n}^{2}}}$£¬
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì£¬ÏûÈ¥yµÃ£º$£¨9+\frac{25{n}^{2}}{{m}^{2}}£©{x}^{2}$-$\frac{50{n}^{2}}{m}x$+25n2-225=0£¬
¡ßÖ±ÏßlÓëÍÖÔ²ÏàÇУ¬¡à¡÷=$£¨\frac{50{n}^{2}}{m}£©^{2}$-$4¡Á£¨9+\frac{25{n}^{2}}{{m}^{2}}£©£¨25{n}^{2}-225£©$=0£¬
»¯¼ò£¬µÃ9m2-m2n2+25n2=0£¬¼´9m2+9n2+16n2-m2n2=0£¬
¡àBF2•AF1=$\frac{|4n-mn|}{\sqrt{{m}^{2}+{n}^{2}}}$•$\frac{4n+mn}{\sqrt{{m}^{2}+{n}^{2}}}$=$\frac{|16{n}^{2}-{m}^{2}{n}^{2}|}{{m}^{2}+{n}^{2}}$=9£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
A£® | 6$\overrightarrow{a}$+2$\overrightarrow{b}$ | B£® | $\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | C£® | $\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$ | D£® | $\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$ |
A£® | f£¨x£©=x2 | B£® | f£¨x£©=sinx | C£® | f£¨x£©=ex | D£® | f£¨x£©=$\frac{1}{x}$ |