ÌâÄ¿ÄÚÈÝ

ÒÑÖªº¯Êýf£¨x£©=xk+b£¨³£Êýk£¬b¡ÊR£©µÄͼÏó¹ýµã£¨4£¬2£©¡¢£¨16£¬4£©Á½µã£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýg£¨x£©µÄͼÏóÓ뺯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Èô²»µÈʽg£¨x£©+g£¨x-2£©£¾2ax+2ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­ÊǺ¯Êýf£¨x£©Í¼ÏóÉϵĵãÁУ¬Q1£¬Q2£¬Q3£¬¡­£¬Qn£¬¡­ÊÇxÕý°ëÖáÉϵĵãÁУ¬OΪ×ø±êÔ­µã£¬¡÷OQ1P1£¬¡÷Q1Q2P2£¬¡­£¬¡÷Qn-1QnPn£¬¡­ÊÇһϵÁÐÕýÈý½ÇÐΣ¬¼ÇËüÃǵı߳¤ÊÇa1£¬a2£¬a3£¬¡­£¬an£¬¡­£¬Ì½ÇóÊýÁÐanµÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©½«£¨4£¬2£©¡¢£¨16£¬4£©Á½µã×ø±ê´úÈ뺯Êýf£¨x£©=xk+bÖУ¬¼´¿ÉÇó³ök¡¢bµÄÖµ£¬½ø¶øÇóµÃº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄÈ¡Öµ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹Øϵ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
½â´ð£º½â£º£¨1£©
2=4k+b
4=16k+b

?b=0£¬k=
1
2

?f(x)=
x

£¨2£©g£¨x£©=x2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2
?
x-2¡Ý0
x2+(x-2)2£¾2ax+2

Ô­ÎÊÌâµÈ¼ÛÓÚa£¼x+
1
x
-2
ÔÚx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢£¬
ÀûÓú¯Êýy=x+
1
x
-2
ÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¿ÉµÃa£¼
1
2
£»
£¨3£©ÓÉ
y=
x
y=
3
x
?x=
1
3
?a1=
2
3
£¬
ÓÉ
y=
x
y=
3
(x-Sn-1)
?
3
x-
x
-
3
Sn-1=0?x=
1+6Sn-1+
1+12Sn-1
6
£¬
½«x´úÈëan=2(x-Sn-1)=
1
3
+
1
3
1+12Sn-1
£¬
¡à(an-
1
3
)2=
1
9
•(1+12Sn-1)
ÇÒa1=
2
3
£¬
ÓÖ(an+1-
1
3
)2=
1
9
•(1+12Sn)
£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º(an+1-
1
3
)2-(an-
1
3
)2=
4
3
an
?(an+1-
1
3
)2=(an+
1
3
)2
?(an+1+an)(an+1-an-
2
3
)=0
£¬
ÓÖ£¬ÒòΪan£¾0£¬ËùÒÔan+1-an-
2
3
=0
£¬
´Ó¶øanÊÇÒÔ
2
3
ΪÊ×Ï
2
3
Ϊ¹«²îµÄµÈ²îÊýÁУ¬¼´an=
2n
3
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø