题目内容
【题目】如图,在正四棱锥中,,点、分别在线段、上,.
(1)若,求证:⊥;
(2)若二面角的大小为,求线段的长.
【答案】(1)证明见解析;(2).
【解析】
试题由于图形是正四棱锥,因此设AC、BD交点为O,则以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系,可用空间向量法解决问题.(1)只要证明=0即可证明垂直;(2)设=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量为,利用法向量夹角与二面角相等或互补可求得.
试题解析: (1)连结AC、BD交于点O,以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系.
因为PA=AB=,
则A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).
由=,得N,
由=,得M,
所以,=(-1,-1,0).
因为=0,所以MN⊥AD
(2) 解:因为M在PA上,可设=λ,得M(λ,0,1-λ).
所以=(λ,-1,1-λ),=(0,-2,0).
设平面MBD的法向量=(x,y,z),
由,得
其中一组解为x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).
因为平面ABD的法向量为=(0,0,1),
所以cos=,即=,解得λ=,
从而M,N,
所以MN==.
练习册系列答案
相关题目