题目内容
函数(),其定义域分成了四个单调区间,则实数、、满足
A.
B.且
C.
D.
(09年长沙一中第八次月考理)(13分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).
(Ⅰ)求的极值;
(满分12分)
已知函数,设其定义域域是.
(1)求;
(2)求函数的值域.
(12分)若存在实数和,使得函数与对其定义域上的任意实数分别满足:,则称直线为与的“和谐直线”.已知为自然对数的底数);
(1)求的极值;
(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.
(本大题满分13分) 若存在常数k和b (k、b∈R),使得函数和对其定义域上的任意实数x分别满足:和,则称直线l:为和的“隔离直线”.已知, (其中e为自然对数的底数). (1)求的极值; (2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本小题12分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).
(1) 判断函数的零点个数并证明你的结论;
(2) 函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.