题目内容
(2012•江西模拟)已知数列{an}中,a1=2,an+1=
,设bn=|
|,n∈N*
(1)求数列{bn}的通项公式;
(2)设数列{bn}的前n项的和为Sn,求证:bnSn≤
(n∈N*)
(3)令cn=
,若数列{cn}的前n项的和为Tn,求证:Tn≤
(4n-1)(n∈N*)
2 |
an+1 |
an-1 |
an+2 |
(1)求数列{bn}的通项公式;
(2)设数列{bn}的前n项的和为Sn,求证:bnSn≤
1 |
16 |
(3)令cn=
1 |
bnSn |
16 |
3 |
分析:(1)由an+1=
,bn=|
|,知bn+1=|
|=|
|=
|
|,由此能推导出bn=(
)n+1.
(2)由b1=
,q=
,知Sn=
=
(1-
),由此能证明bnSn≤
(n∈N*).
(3)由bnSn≤
(n∈N*),知cn=
≤(
)2≤4n+1,由此能够证明Tn≤
(4n-1).
2 |
an+1 |
an-1 |
an+2 |
an+1-1 |
an+1+2 |
| ||
|
1 |
2 |
an-1 |
an+2 |
1 |
2 |
(2)由b1=
1 |
4 |
1 |
2 |
| ||||
1-
|
1 |
2 |
1 |
2 n |
1 |
16 |
(3)由bnSn≤
1 |
16 |
1 |
bnSn |
1 |
bn |
16 |
3 |
解答:解:(1)∵an+1=
,bn=|
|,
∴bn+1=|
|
=|
|
=|
|
=
|
|,
∴bn+1=
bn,
∵a1=2,∴b1=|
| =
,
故{bn}是首项为
,公比为
的等比数列,
∴bn=(
)n+1.
(2)∵{bn}是首项为
,公比为
的等比数列,
即b1=
,q=
,
∴Sn=
=
(1-
),
∴bnSn=(
)n+1•
(1-
)=
[1-(
)n]•(
)n≤
.
(3)∵bnSn≤
(n∈N*),
∴cn=
≤(
)2≤4n+1,
∴Tn≤
(4n-1).
2 |
an+1 |
an-1 |
an+2 |
∴bn+1=|
an+1-1 |
an+1+2 |
=|
| ||
|
=|
2-an-1 |
2+2an+2 |
=
1 |
2 |
an-1 |
an+2 |
∴bn+1=
1 |
2 |
∵a1=2,∴b1=|
2-1 |
2+2 |
1 |
4 |
故{bn}是首项为
1 |
4 |
1 |
2 |
∴bn=(
1 |
2 |
(2)∵{bn}是首项为
1 |
4 |
1 |
2 |
即b1=
1 |
4 |
1 |
2 |
∴Sn=
| ||||
1-
|
1 |
2 |
1 |
2 n |
∴bnSn=(
1 |
2 |
1 |
2 |
1 |
2 n |
1 |
4 |
1 |
2 |
1 |
2 |
1 |
16 |
(3)∵bnSn≤
1 |
16 |
∴cn=
1 |
bnSn |
1 |
bn |
∴Tn≤
16 |
3 |
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目