题目内容
在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为 .
解析试题分析:因为焦点在x轴上的双曲线的渐近线方程为,所以考点:双曲线渐近线方程
过抛物线的焦点作直线交抛物线于两点,若A到抛物线的准线的距离为4,则 .
以下几个命题中:其中真命题的序号为_________________(写出所有真命题的序号)①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;③双曲线有相同的焦点; ④在平面内,到定点的距离与到定直线的距离相等的点的轨迹是抛物线.
已知双曲线-=1的离心率为2,焦点与椭圆+=1的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 .
若斜率为的直线l与椭圆=1(a>b>0)有两个不同的交点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为________.
已知F1、F2是椭圆C:=1(a>b>0)的两个焦点,P为椭圆C上一点,且⊥.若△PF1F2的面积为9,则b=________.
椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|= ,∠F1PF2的大小为 .
点A为两曲线C1:+=1和C2:x2-=1在第二象限的交点,B、C为曲线C1的左、右焦点,线段BC上一点P满足:=+m(+),则实数m的值为 .
过双曲线-=1(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M,N两点,O为双曲线的中心,·=0,则双曲线的离心率为 .