ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶¨ÒåÔÚʵÊý¼¯Éϵĺ¯Êýfn£¨x£©=xn£¬n¡ÊN*£¬Æäµ¼º¯Êý¼ÇΪf'n£¨x£©£¬ÇÒÂú×㣺f2(¦Î2)=f2(¦Î1)+(¦Î2-¦Î1)f¡ä2[¦Î1+
(¦Î2-¦Î1)]£¨¦Î1¡Ù¦Î2£©£¬¦Ë£¬¦Î1£¬¦Î2Ϊ³£Êý£®
£¨¢ñ£©ÊÔÇó¦ËµÄÖµ£»
£¨¢ò£©É躯Êýf2n-1£¨x£©Óëfn£¨1-x£©µÄ³Ë»ýΪº¯ÊýF£¨x£©£¬ÇóF£¨x£©µÄ¼«´óÖµÓ뼫Сֵ£»
£¨¢ó£©ÊÔÌÖÂÛ¹ØÓÚxµÄ·½³Ì
=
ÔÚÇø¼ä£¨0£¬1£©ÉϵÄʵÊý¸ùµÄ¸öÊý£®
1 |
¦Ë |
£¨¢ñ£©ÊÔÇó¦ËµÄÖµ£»
£¨¢ò£©É躯Êýf2n-1£¨x£©Óëfn£¨1-x£©µÄ³Ë»ýΪº¯ÊýF£¨x£©£¬ÇóF£¨x£©µÄ¼«´óÖµÓ뼫Сֵ£»
£¨¢ó£©ÊÔÌÖÂÛ¹ØÓÚxµÄ·½³Ì
f¡än(1+x) |
f¡än+1(1+x) |
¦Ën-1 |
¦Ën+1-1 |
·ÖÎö£º£¨¢ñ£©¸ù¾Ýf2£¨x£©=x2£¬¿ÉµÃf2¡ä£¨x£©=2x£¬ÀûÓÃf2(¦Î2)=f2(¦Î1)+(¦Î2-¦Î1)f¡ä2[¦Î1+
(¦Î2-¦Î1)]£¬¿ÉµÃ
¦Î22=¦Î12+2(¦Î2-¦Î1)[¦Î1+
(¦Î2-¦Î1)]£¬»¯¼ò¿ÉÇó¦ËµÄÖµ£»
£¨¢ò£©ÏÈÇóµÃy=F£¨x£©=f2n-1£¨x£©•fn£¨1-x£©=£¨1-x£©n•x2n-1£¬ÔÙÇ󵼺¯Êýy'=-n£¨1-x£©n-1•x2n-1+£¨2n-1£©x2n-2•£¨1-x£©n=x2n-2•£¨1-x£©n-1[£¨2n-1£©-£¨3n-1£©x]£¬Áîy'=0£¬´Ó¶ø¿ÉµÃ¼«Öµµã£¬Óɴ˽øÐзÖÀàÌÖÂÛ£¬½ø¶øÈ·¶¨º¯ÊýµÄ¼«Öµ£®
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬
=
£¬¼´
=
(x¡Ù-1)£¬´Ó¶ø·½³ÌΪ
•
=
(x¡Ù-1)£¬½ø¶ø¿ÉµÃ½áÂÛ£®
1 |
¦Ë |
¦Î22=¦Î12+2(¦Î2-¦Î1)[¦Î1+
1 |
¦Ë |
£¨¢ò£©ÏÈÇóµÃy=F£¨x£©=f2n-1£¨x£©•fn£¨1-x£©=£¨1-x£©n•x2n-1£¬ÔÙÇ󵼺¯Êýy'=-n£¨1-x£©n-1•x2n-1+£¨2n-1£©x2n-2•£¨1-x£©n=x2n-2•£¨1-x£©n-1[£¨2n-1£©-£¨3n-1£©x]£¬Áîy'=0£¬´Ó¶ø¿ÉµÃ¼«Öµµã£¬Óɴ˽øÐзÖÀàÌÖÂÛ£¬½ø¶øÈ·¶¨º¯ÊýµÄ¼«Öµ£®
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬
f¡än(1+x) |
f¡än+1(1+x) |
2n-1 |
2n+1-1 |
n(1+x)n-1 |
(n+1)(1+x)n |
2n-1 |
2n+1-1 |
n |
(n+1) |
1 |
1+x |
2n-1 |
2n+1-1 |
½â´ð£º½â£º£¨¢ñ£©f2£¨x£©=x2£¬Ôòf2¡ä£¨x£©=2x£¬
¡à¦Î22=¦Î12+2(¦Î2-¦Î1)[¦Î1+
(¦Î2-¦Î1)]£¬ÓÖ¦Î1¡Ù¦Î2£¬
¡à¦Î2+¦Î1=2¦Î1+
(¦Î2-¦Î1)⇒¦Ë=2£®¡£¨4·Ö£©
£¨¢ò£©Áîy=F£¨x£©=f2n-1£¨x£©•fn£¨1-x£©=£¨1-x£©n•x2n-1£¬
Ôòy'=-n£¨1-x£©n-1•x2n-1+£¨2n-1£©x2n-2•£¨1-x£©n=x2n-2•£¨1-x£©n-1[£¨2n-1£©-£¨3n-1£©x]£¬¡£¨3·Ö£©
Áîy'=0£¬µÃx1=0£¬x 2=
£¬x3=1£¬ÇÒx1£¼x2£¼x3£¬
µ±nΪÕýżÊýʱ£¬ËæxµÄ±ä»¯£¬y'ÓëyµÄ±ä»¯ÈçÏ£º
ËùÒÔµ±x=
ʱ£¬y¼«´ó=
£»µ±x=1ʱ£¬y¼«Ð¡=0£®¡£¨7·Ö£©
µ±nΪÕýÆæÊýʱ£¬ËæxµÄ±ä»¯£¬y'ÓëyµÄ±ä»¯ÈçÏ£º
ËùÒÔµ±x=
ʱ£¬y¼«´ó=
£»ÎÞ¼«Ð¡Öµ£®¡£¨10·Ö£©
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬
=
£¬¼´
=
(x¡Ù-1)£¬
ËùÒÔ·½³ÌΪ
•
=
(x¡Ù-1)£¬¡£¨12·Ö£©¡àx=
=
£¾0£¬¡£¨13·Ö£©
ÓÖx-1=
£¬¶ø¶ÔÓÚn¡ÊN*£¬ÓÐ2n+1£¾n+2£¨ÀûÓöþÏîʽ¶¨Àí¿ÉÖ¤£©£¬¡àx£¼1£®¡£¨14·Ö£©
×ÛÉÏ£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýn£¬·½³ÌÖ»ÓÐΨһʵ¸ù£¬ÇÒ×ÜÔÚÇø¼ä£¨0£¬1£©ÄÚ£¬ËùÒÔÔ·½³ÌÔÚÇø¼ä£¨0£¬1£©ÉÏÓÐΨһʵ¸ù£®¡£¨15·Ö£©
¡à¦Î22=¦Î12+2(¦Î2-¦Î1)[¦Î1+
1 |
¦Ë |
¡à¦Î2+¦Î1=2¦Î1+
2 |
¦Ë |
£¨¢ò£©Áîy=F£¨x£©=f2n-1£¨x£©•fn£¨1-x£©=£¨1-x£©n•x2n-1£¬
Ôòy'=-n£¨1-x£©n-1•x2n-1+£¨2n-1£©x2n-2•£¨1-x£©n=x2n-2•£¨1-x£©n-1[£¨2n-1£©-£¨3n-1£©x]£¬¡£¨3·Ö£©
Áîy'=0£¬µÃx1=0£¬x 2=
2n-1 |
3n-1 |
µ±nΪÕýżÊýʱ£¬ËæxµÄ±ä»¯£¬y'ÓëyµÄ±ä»¯ÈçÏ£º
x | £¨-¡Þ£¬0£© | 0 | (0£¬
|
|
(
|
1 | £¨1£¬+¡Þ£© | ||||||
y' | + | 0 | + | 0 | - | 0 | + | ||||||
y | ¼«´óÖµ | ¼«Ð¡Öµ |
2n-1 |
3n-1 |
(2n-1)2n-1•nn |
(3n-1)3n-1 |
µ±nΪÕýÆæÊýʱ£¬ËæxµÄ±ä»¯£¬y'ÓëyµÄ±ä»¯ÈçÏ£º
x | £¨-¡Þ£¬0£© | 0 | (0£¬
|
|
(
|
1 | £¨1£¬+¡Þ£© | ||||||
y' | + | 0 | + | 0 | - | 0 | + | ||||||
y | ¼«´óÖµ |
2n-1 |
3n-1 |
(2n-1)2n-1•nn |
(3n-1)3n-1 |
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬
f¡än(1+x) |
f¡än+1(1+x) |
2n-1 |
2n+1-1 |
n(1+x)n-1 |
(n+1)(1+x)n |
2n-1 |
2n+1-1 |
ËùÒÔ·½³ÌΪ
n |
(n+1) |
1 |
1+x |
2n-1 |
2n+1-1 |
n(2n+1-1)-(n+1)(2n-1) |
(n+1)(2n-1) |
1+(n-1)2n |
(n+1)(2n-1) |
ÓÖx-1=
n+2-2n+1 |
(n+1)(2n-1) |
×ÛÉÏ£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊýn£¬·½³ÌÖ»ÓÐΨһʵ¸ù£¬ÇÒ×ÜÔÚÇø¼ä£¨0£¬1£©ÄÚ£¬ËùÒÔÔ·½³ÌÔÚÇø¼ä£¨0£¬1£©ÉÏÓÐΨһʵ¸ù£®¡£¨15·Ö£©
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éµ¼ÊýµÄÔËÓ㬿¼²éº¯ÊýµÄ¼«Öµ£¬¿¼²é·½³Ì¸ùµÄÎÊÌ⣬ÓнϴóµÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿